

Journal of Organometallic Chemistry 483 (1994) 115-122

Synthesis and electrophilic reactivity of $[{\eta^5-1-N(CH_2CH_2O)_3Si-6-Me-C_6H_5}Mn(CO)_2NO]BF_4$

Su Seong Lee, Eunhui Jeong, Young Keun Chung *

Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, South Korea

Received 26 January 1994; in revised form 13 April 1994

Abstract

 $[\{\eta^{5}-1-N(CH_{2}CH_{2}O)_{3}Si-6-Me-C_{6}H_{5}\}Mn(CO)_{2}NO]BF_{4}$ [3(CO)] has been synthesized by the reaction of $[\{\eta^{5}-1-N(CH_{2}CH_{2}O)_{3}Si-6-Me-C_{6}H_{5}\}Mn(CO)_{3}]$ (2) with NOBF₄. The addition of phosphines or phosphite to 3(CO) yielded $[\{\eta^{5}-1-N(CH_{2}CH_{2}O)_{3}Si-6-Me-C_{6}H_{5}\}Mn(CO)_{1}]$ (L = PPh₃, PMePh₂, PHPh₂, and P(OPh)₃). Addition of excess P(OMe)₃ to 3(CO) led to $[\{\eta^{4}-1-N(CH_{2}CH_{2}O)_{3}Si-5-P(O)(OMe)_{2}-6-Me-C_{6}H_{5}]-Mn(CO)_{2}NO]$ (4), which decomposed to liberate the 1,3-cyclohexadiene derivative of silatrane 5. Hydride addition to 3(CO) gave $[\{\eta^{4}-1-N(CH_{2}CH_{2}O)_{3}Si-6-Me-C_{6}H_{6}\}Mn(CO)_{2}NO]$ (6) and $[\{\eta^{4}-6-Me-5-N(CH_{2}CH_{2}O)_{3}Si-C_{6}H_{6}\}Mn(CO)_{2}NO]$ (7). After removal of the manganese moiety from 6 and 7, 1,3-cyclohexadiene derivatives of silatrane, 8 and 10, were obtained. Treatment of 3(CO) with the carbanion of ethyl cyanoacetate and then Me₃NO in refluxing benzene gave the *cis*-disubstituted cyclohexadiene derivative of silatrane, 12. Addition of LiCH₂CN to 3(CO) yielded $[\{\eta^{5}-1-N(CH_{2}CH_{2}O)_{3}Si-6-Me-C_{6}H_{5}\}Mn(CO)(CO)(CO)(CO)(CO)(CH_{2}CN)NO]$ [13(C(O)CH₂CN)] which rearranged to the diene complex, presumably possessing an *endo* substituent. The diene compound afforded the *trans*-disubstituted cyclohexadiene derivative of silatrane 15(C(O)CH₂CN), LiCH₂CO₂¹Pr, and LiCH₂CO₂¹Bu also attacked the CO in 3(CO), ultimately affording 15 (C(O)CH₂CO¹Pr) and 15(C(O)CH₂CO)¹Bu), respectively.

Keywords: Manganese; Silatranyl; Cyclohexadiene; Cyclohexadienyl; Nitrosyl; Rearrangement

1. Introduction

Silatranes are siloxyalkylamines with the structure of a three-winged cage. These compounds show a wide range of toxicities in mammals and a variety of biological activities [1]. Although silatranes have been much studied, cyclohexadiene derivatives of silatrane have received little attention. To our knowledge, there have been no reports about the synthesis of cyclohexadiene derivatives of silatrane.

Recently we reported the usefulness and uniqueness of phenylsilatrane as a π -coordinating ligand [2]. We have also demonstrated the control of the regioselectivity of nucleophile addition to (phenylsilatrane) Mn(CO)₃⁺ cation (1). Thus, compound $[{\eta^{5}-1-N(CH_{2} CH_{2}O)_{3}Si-6-Me-C_{6}H_{5}}Mn(CO)_{3}]$ (2) was easily obtained by reaction between 1 and MeLi or MeMgBr in CH₂Cl₂. The compound 2 can be easily activated by treatment with NOBF₄ or NOPF₆ to give $[{\eta^{5}-1-N(CH_{2}CH_{2}O)_{3}Si-6-Me-C_{6}H_{5}}Mn(CO)_{2}NO]BF_{4}$ [3(CO)].

In the present paper, we describe the synthesis and chemistry of 3(CO), the synthesis of several new silatranyl cyclohexadiene derivatives, and the novel migration of the C(O)R group from metal to the coordinated silatranyl cyclohexadienyl ring.

2. Experimental section

All solvents were purified by standard methods and all synthetic procedures were done under a nitrogen

^{*} Corresponding author.

⁰⁰²²⁻³²⁸X/94/\$07.00 © 1994 Elsevier Science S.A. All rights reserved SSDI 0022-328X(94)24701-J

Table 1 Characterization of new compounds

3(CO)	Mp 112°C dec. IR ν_{CO} 2100, 2060 cm ⁻¹ , ν_{NO} 1815 cm ⁻¹ ; ¹ H NMR (d_6 -acetone) ^a
5(00)	
	δ 6.97 (t, 5.47 Hz, 1H, H ³), 6.01 (d, 5.47 Hz, 1H, H ²), 4.76 (m, 1H, H ⁶),
	3.83 (t, 5.9 Hz, 6H, OCH ₂), 3.08 (t, 5.9 Hz, 6H, NCH ₂), 0.70 (d, 6.5 Hz,
	3H, Me) ppm; Anal. Found: C, 32.06; H, 3.35; N, 5.00. C ₁₅ H ₂₀ BF ₄ MnN ₂ O ₆ Si
	calc.: C, 32.6; H 3.64; N, 5.27%.
3 (PPh ₃)	IR ν_{CO} 2020 cm ⁻¹ , ν_{NO} 1770 cm ⁻¹ ; ¹ H NMR (d_6 -acetone) δ 7.84–7.53 (m, 15H,
	Ph), 7.02 (br t, 1H, H ³), 5.36 (d, 4.6 Hz, 1H, H ²), 5.21 (br m, 1H, H ⁴), 2.85 ($_{12}$ 5.4 Hz, (1L, OCH) > 2.00 (4.5 4 Hz, NGH) > 2.75 ($_{12}$ 0.11 H $_{12}$ (5.6)
	3.85 (t, 5.4 Hz, 6H, OCH ₂), 3.09 (t, 5.4 Hz, NCH ₂), 2.76 (m, 2H, H ^{5,6}),
	0.46 (d, 5.4 Hz, 3H, Me) ppm. Anal. Found: C, 52.62; H, 4.83; N, 3.22.
	$C_{32}H_{36}BF_4MnN_2O_5Si calc.: C, 52.76; H, 4.84; N, 3.84\%.$
$3(PPh_2Me)$	IR ν_{CO} 2020 cm ⁻¹ , ν_{NO} 1770 cm ⁻¹ ; ¹ H NMR (CD _z Cl ₂) of the major isomer δ 6.47
	(t, 5.6 Hz, 1H, H ⁴), 5.02 (d, 5.6 Hz, 1H, H ²), 3.82 (t, 5.9 Hz, 6H,
	OCH ₂), 2.96 (t, 5.9 Hz, 6H, NCH ₂), 2.67 (m, 2H, H ^{5,6}), 2.08 (d, 9.7 Hz, 3H,
	PMe), 0.48 (d, 6.1 Hz, 3H, Me) ppm. ¹ H NMR (CD_2Cl_2) ^b of the minor isomer
	δ 5.93, 5.54, 4.83, 2.03 (d, 10 Hz, 3H, PMe), 0.67 (d, 6.6 Hz, 3H, Me)
	ppm. Anal. Found: C, 49.28; H, 5.00; N, 3.54. C ₂₇ H ₃₃ NF ₄ MnN ₂ O ₅ Si calc.: C,
	48.67; H, 4.99; N, 3.54%.
3(PPh ₂ H)	IR ν_{CO} 2020 cm ⁻¹ , ν_{NO} 1760 cm ⁻¹ ; ¹ H NMR (CD ₂ Cl ₂) of the major isomer δ 7.64
	-7.42 (m, 10H, Ph), 6.90 (d, 395.9 Hz, 1H, PH), 6.23 (t, 4.4 Hz, 1H, H ³),
	5.49 (dd, 4.4, 6.2 Hz, 1H, H ⁴), 5.27 (dm, 4.4 Hz, 1H, H ²), 4.62 (t, 6.7
	Hz, 1H, H ⁵), 3.80 (t, 5.6 Hz, 6H, OCH ₂), 2.97 (t, 5.6 Hz, 6H, NCH ₂), 2.80
	(m, 2H, $H^{5,6}$), 0.69 (d, 6.6 Hz, 3H, Me) ppm. ¹ H NMR (CD ₂ Cl ₂) ^b of the minor
	isomer δ 7.64–7.42 (m, Ph), 6.76 (d, 382.2 Hz, 1H, PH), 6.47 (1H, H ³),
	3.17 (br t, 1H, H ⁵), 0.54 (d, 6.6 Hz, 3H, Me) ppm. Anal. Found: C, 47.49;
3(P(OPh) ₃)	H, 4.68; N, 3.85. C ₂₆ H ₃₁ BF ₄ MnN ₂ O ₅ Si calc.: C, 47.87; H, 4.78; N, 4.29%.
	IR $\nu_{\rm CO}$ 2040 cm ⁻¹ , $\nu_{\rm NO}$ 1780 cm ⁻¹ ; ¹ H NMR (CD ₃ CN) δ 7.59–7.21 (m, 15H, Ph),
	5.80 (t, 6.4 Hz, 1H, H ⁴), 5.58 (br t, 1H, H ³), 4.98 (d, 5.8 Hz, 1H, H ²),
	3.69 (t, 6.0 Hz, 6H, OCH ₂), 3.32 (t, 6.0 Hz, 1H, H ⁵), 2.90 (t, 6.0 Hz, 6H,
	NCH ₂), 2.61 (m, 1H, H ⁶), 0.45 (d, 6.4 Hz, 3H, Me) ppm. Anal. Found: C,
	50.30; H, 4.81; N, 3.41. C ₃₂ H ₃₅ BF ₄ MnN ₂ O ₈ Si calc.: C, 49.51; H, 4.54; N,
	3.61%.
4	IR $\nu_{\rm CO}$ 2020, 1960 cm ⁻¹ , $\nu_{\rm NO}$ 1720 cm ⁻¹ , $\nu_{\rm P=O}$ 1250 cm ⁻¹ ; ¹ H NMR (d_8 -THF) ^c δ
	5.58 (d, 3.9 Hz, 1H, H ²), 5.38 (br t, 1H, H ³), 3.53 (t, 5.8 Hz, 6H,
	OCH ₂), 2.62 (t, 5.8 Hz, 6H, NCH ₂), 2.27 (dd, 9.7, 24.6 Hz, H ⁵), 1.12 (d, 6.5
	Hz, 3H, Me) ppm. Anal. Found: C, 39.21; H, 5.14; N, 5.09.
	C ₁₇ H ₂₆ MnN ₂ O ₉ PSi calc.: C, 39.54; H, 5.07; N, 5.42%.
5	IR $\nu_{P=0}$ 1250 cm ⁻¹ , ν_{Si-0} 1080, 1120 cm ⁻¹ . ¹ H NMR (CDCl ₃) δ 6.39 (d, 4.6 Hz,
	1H, H ²); 6.05 (m, 1H, H ³), 5.59 (t, 10 Hz, 1H, H ⁴), 3.80 (t, 5.8 Hz, 6H,
	OCH ₂), 3.79 (d, 14 Hz, 6H, POMe), 3.01 (dm, 26 Hz, 1H, H ⁵), 2.82 (t, 5.8 Hz, 6H,
	NCH ₂), 1.05 (d, 6.8 Hz, 3H, Me) ppm. Anal. Found: C, 47.16; H, 6.75; N,
	3.62. C ₁₅ H ₂₆ NO ₆ PSi calc.: C, 47.99; H, 6.98; N, 3.37%.
8	IR ν_{CO} 2020, 1960 cm ⁻¹ , ν_{NO} 1730 cm ⁻¹ . ¹ H NMR (CD ₂ Cl ₂) δ 5.70 (dd, 0.73,
	4.4 Hz, 1H, H ²), 5.59 (ddd, 0.73, 4.7, 6.3 Hz, 1H, H ³), 3.71 (t, 5.86 Hz,
	6H, OCH ₂), 2.75 (t, 5.86 Hz, 6H, NCH ₂), 2.47 (m, 1H, H ⁶), 1.94 (ddd, 2.9,
	10.0, 15 Hz, 1H, H ^{5-endo}), 1.47 (dd, 2.4, 15 Hz, 1H, H ^{5-exo}), 1.02 (d, 6.8
	Hz, 3H, Me) ppm. Anal. Found: C, 44.37; H, 5.12; N, 6.68. C ₁₅ H ₂₀ MnN ₂ O ₆ Si
7	calc.: C, 44.12; H, 5.18; N, 6.86%.
	IR ν_{CO} 2020, 1960 cm ⁻¹ , ν_{NO} 1730 cm ⁻¹ . ¹ H NMR (CD ₂ Cl ₂) δ 5.42 (m, 1H, H ²).
	5.36 (m, 1H, H ³), 3.84 (m, 1H, H ¹), 3.68 (t, 5.86 Hz, 6H, OCH ₂), 3.37 (m,
	1H, H ⁴), 2.75 (t, 5.86 Hz, 6H, NCH ₂), 2.40 (m, 1H, H ⁵), 1.45 (dd, 3.1,
	10.5 Hz, 1H, H ⁶), 1.11 (d, 6.8 Hz, 3H, Me) ppm. Anal. Found: C, 44.37; H,
	5.12; N, 6.68. C ₁₅ H ₂₀ MnN ₂ O ₆ Si calc.: C, 44.12; H, 5.18; N, 6.86%.
8(H)	Mp 138°C. ¹ H NMR (CDCl ₃) δ 6.39 (d, 4.88 Hz, 1H, H ²), 5.89 (ddd, 2.2,
	4.88, 9.2 Hz, 1H, H ³), 5.65 (t, 8.3 Hz, 1H, H ⁴), 3.80 (t, 5.7 Hz, 6H,
	OCH ₂), 2.81 (t, 5.7 Hz, 6H, NCH ₂), 2.38 (dd, 5.6, 13.7 Hz, 1H, H ^{5-endo}),
	1.95 (dd, 5.86, 14.2 Hz, 1H, H ^{5-exo}), 1.01 (d, 6.6 Hz, 3H, Me) ppm. Anal.
	Found: 58.64; H, 7.41; N, 5.00. C ₁₃ N ₂₁ NO ₃ Si calc.: C, 58.39; H, 7.91; N,
	5.24%.
8(D)	¹ H NMR (CDCl ₃) δ 6.40 (d, 4.64 Hz, 1H, H ²), 5.89 (dd, 4.88, 9.52 Hz, 1H,
• •	H ³), 5.65 (dd, 5.86, 9.28 Hz, 1H, H ⁴), 3.81 (t, 5.86 Hz, 6H, OCH ₂), 2.82
	(t, 5.85 Hz, 6H, NCH ₂), 2.44 (m, 1H, H ⁶), 1.93 (dd, 3.2, 5.6 Hz, 1H
	H ^{5-exo}), 1.02 (d, 7.1 Hz, 3H, Me) ppm.
10(H)	¹ H NMR (CDCl ₃) δ 5.86–5.72 (m, 4H, H ^{2,3,4,5}), 3.75 (t, 5.9 Hz, 6H,
	OCH ₂), 2.78 (t, 5.9 Hz, 6H, NCH ₂), 2.42 (m, 1H, H ⁶), 1.85 (dt, 2.2, 8.3
	Hz, 1H, H ¹), 0.90 (d, 7.1 Hz, 3H, Me) ppm.

$ \begin{array}{c} OCH_{2}(2, 242 (m, 1H, H^{4}), 0.92 (d, 7.1 Hz, 3H, Me) \ ppm. \\ II \ Wey 2240 cm^{-1}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Table 1 (continued)	
	10(D)	¹ H NMR (CDCl ₃) δ 5.86–5.73 (m, 4H, H ^{2,3,4,5}), 3.77 (t, 5.9 Hz, 6H,
$ \begin{array}{llllll} \label{eq:result} II & \mbox{III} R \ r_{CY}^{CY} 2240 \ cm^{-1}, \ r_{CY} 2200, \ 1960 \ cm^{-1}, \ r_{FW} 1730 \ cm^{-1}, \ r_{FW} 1730 \ cm^{-1}, \ r_{FW} 2240 \ cm^{-1}, \ r_{FW} 2240 \ cm^{-1}, \ r_{FW} 14 \ model{FW} 15, \ 1000 \ cm^{-1}, \ r_{FW} 14, $		OCH_2), 2.81 (t, 5.9 Hz, 6H, NCH_2), 2.42 (m, 1H, H ⁶), 0.92 (d, 7.1 Hz, 3H,
$ 12 c = IR \ \nu_{CP} 2240 cm^{-1} - IH MMR (CDC1) & \delta 6.40 (d, 46 Hz, IH, H4), 601 (m, 1H, H4), 5.63 (d, 9.8 Hz, IH, H4 major isomer), 3.51 (d, 9.8 Hz, IH, H4 major isomer), 3.52 (d, 1.7 Hz, 1H, CH major isomer), 3.58 (t, 5.9 Hz, 6H, NCH2 minor isomer), 3.51 (d, 9.8 Hz, IH, H4 major isomer), 3.55 (d, 8.8 Hz, III, CH minor isomer), 3.55 (d, 1.7 Hz, 3H, Me major isomer), 1.31 (t, 7.1 Hz, 3H, Me major isomer) pm. 12. (COC) (CH2CN) IR \nu_{CO} 200 cm-1, \nu_{CO} 1020 cm-1, \nu_{CO} 1020 cm-1, \nu_{CO} 1020 cm-1, \mu_{CO} 1620 cm-1, HMR (CDC1) \delta 6.55 (t, 4.5 Hz, 1H, H4), 4.89 (m, 2H, H2), 3.79 (t, 5.86 Hz, 6H, CH2), 3.55 (d, 1.56 Hz, 1H, H4), 0.48 (d, 6.8 Hz, 3H, Me pm, Anal. Found: C 45562 (H, 5.24 K, 8.44 C17H2MNN1O, 50 cach: C, 45.64 (H, CH2), 3.55 (d, 1.56 Hz, 1H, H4), 0.48 (d, 6.8 Hz, 3H, Me) pm. Anal. Found: C 45562 (H, 5.24 K, 8.44 C17H2MNN1O, 50 cach: C, 45.64 (H, 4.95 N, 9.39%. IR \nu_{CO} 1995 cm-1, \nu_{NO} 1723 cm-1, \nu_{NO} 108, 1120 cm-1, 1H NMR (CDC1) \delta 6.18 (H2), 4.88 (H3-9), 3.68 (CH2) 3.30 (H3) 2.74 (CH2).048 (Me) ppm. 18(CO)CH2CO2PP)f IR \nu_{CO} 1980 cm-1, \nu_{NO} 1720 cm-1, \nu_{NO} 1018 cm-1, \nu_{NO} 1098, 1120 cm-1, 1H NMR (CDC1) \delta 6.38 (d, 4.9 Hz, H, H3), 6.10 (dd, 0.61, 5.1, 9.4 Hz, 1H, H3), 5.51 (dd, 0.10, 6.4, 9.4 Hz, H, H3), 6.10 (dd, 0.51, 9.4 Hz, 1H, H3), 5.52 (dd, 6.5 PHZ, 6H, NCH1), 3.74 (CH2).048 (Me) ppm. 18 (CO)CH2CO2/Bu) IR \nu_{CO} 2248 cm-1, \nu_{CO} 1705 cm-1, \nu_{NO} 1098, 1120 cm-1, 1H NMR (CDC1) \delta 6.35 (d, 4.9 Hz, H, H3), 5.61 (dd, 2.9 Hz, H, H4), 5.31 (dd, 1.0, 6.4, 9.4 Hz, H, H3), 5.52 (dd, 6.2, 9.4 Hz, 1H, H3), 5.52 (dd, 6.2, 9$		
$ H^{3}_{2}, S.3 (d, 9.8 Hz, 1H, H^{4} minor isomer), 5.3 (d, 9.8 Hz, 1H, H^{4} major isomer), 3.5 (d, 9.8 Hz, 1H, H^{4} major isomer), 3.5 (d, 1.7 Hz, 1H, CH major isomer), 3.5 (d, 1.7 Hz, 1H, CH major isomer), 3.5 (d, 1.1 7 Hz, 1H, CH major isomer), 3.5 (d, 1.1 7 Hz, 1H, CH major isomer), 3.5 (d, 1.1 7 Hz, 1H, CH major isomer), 3.5 (d, 1.1 7 Hz, 1H, CH major isomer), 1.3 (t, 1.1 Hz, 3H, Me major isomer), 0.9 (d, 7.1 Hz, 3H, Me major isomer), 0.9 (d, 6.0 Hz, 1H, H^{4}), 3.6 (Hz), 3.5 (d, 15.6 Hz, 1H, (Hz), 3.3 (d, 6.0 Hz, 1H, H^{4}), 5.28 (t, 5.8 Hz, 6H, OCH2), 3.6 (CH2), 3.6 (CH2), 3.1 (Hz), 0.2 (D (m-1, H) MNR (CDCl2) & 6.18 (H2), 4.88 (H3), 3.40 (H3) ppm. 18 (CO)(H2CO2/Pr)f IR \nu_{CO} 1980 cm-1, \nu_{CO} 107 cm-1, \nu_{SI-O} 1092 (121 cm-1, 1 H NMR (CDCl3) & 6.38 (d, 4.9 Hz, 1H, H3), 5.1 (d, dd, 1.0, 5.1, 9.4 Hz), 1.13 (d, 7.0 Hz, 3H, Me) ppm. Anal. Found: C, 57.05; H, 6.67; N, 9.17 C, \mu_{HZ}, 9.0 (Si cale: C, 57.46; H, 6.61; N, 8.38 (HXMS Fourier 2.64 (200 Mz -1 CO)(Hz), 200 (Ed), 201 & 6.35 (dd), 10.4, 9.4 Hz, 1H, H3), 1.13 (d, 7.0 Hz, 3H, Me) ppm. Anal. Found: C, 57.05; H, 6.67; N, 9.17 C, \mu_{HZ}, 9.0 (Si cale: C, 57.46; H, 6.63; N, 8.386; HXMS Fourier 2.66 (200 Mz -1 CO)(Hz), 200 (Hz), 201 (Hz), 100; Hz, HH, H3), 3.03 (L, 7.0 Hz, 3H, Me) ppm. Anal.$	11	IR ν_{CN} 2240 cm ⁻¹ , ν_{CO} 2020, 1960 cm ⁻¹ , ν_{NO} 1730 cm ⁻¹ .
$ \begin{split} \text{isomer}, 4.27 (q, 7.3 \text{ Hz}, 2H, CH_{2}, 3.32 (t, 5.9 \text{ Hz}, 6H, OcH_{2} \text{ major} \\ \text{isomer}, 3.30 (t, 5.9 \text{ Hz}, 6H, OcH_{2} \text{ minor isomer}), 3.55 (d, 8H, Hz, HI, CH minor isomer), 3.55 (d, 8H, Hz, HI, CH minor isomer), 3.55 (d, 8H, Hz, HJ, CH minor isomer), 1.33 (t, 7.1 \text{ Hz}, 3H, Me minor isomer), 1.33 (t, 7.1 \text{ Hz}, 3H, Me minor isomer), 0.33 (d, 7.1 \text{ Hz}, 3H, Me major isomer), 0.93 (d, 7.1 \text{ Hz}, 3H, Me major isomer), 0.93 (d, 7.1 \text{ Hz}, 3H, Me major isomer), 0.93 (d, 7.1 \text{ Hz}, 3H, Me major isomer), 0.93 (d, 7.1 \text{ Hz}, 3H, Me major isomer), 0.93 (d, 7.1 \text{ Hz}, 3H, Me major isomer), 0.93 (d, 7.1 \text{ Hz}, 3H, Me major isomer), 0.93 (d, 7.1 \text{ Hz}, 3H, Me major isomer), 0.93 (d, 7.1 \text{ Hz}, 3H, Me major isomer), 0.93 (d, 7.1 \text{ Hz}, 3H, Me major isomer), 0.93 (d, 7.1 \text{ Hz}, 3H, Me major isomer), 0.93 (d, 7.1 \text{ Hz}, 3H, Me major isomer), 0.93 (d, 7.1 \text{ Hz}, 3H, Me major isomer), 0.93 (d, 7.1 \text{ Hz}, 3H, Me) (f, 0.0H_2, 1H, 1H, 1H, 2h, 3.43 (t, 6.0 \text{ Hz}, 1H, 1H, 1H, 1H, 2h, 253 (t, 5.54 \text{ Hz}, 1H, 1H, 1H, 1H, 2h, 254 (t, 6.1 \text{ Hz}, 1H, 1H, 1H, 1H, 2h, 255 (t, 15.54 \text{ Hz}, 1H, 1H, 1H, 1H, 2h, 254 (t, 6.0 \text{ Hz}, 1H, 1H, 1H, 0.48 (d, 6.4 \text{ Hz}, 3H, Me) 0pm. Anal. Found: C, 45.52 (f, 5.24 \text{ NS}, 84 (C_{17}H_{22}MnN_3O_6S calc: C, 45.64 (H, 4.95; N, 9.39\%. IR vc_{00}1996 cm^{-1}, v_{10-0}1702 cm^{-1}, v_{20-0}1620 cm^{-1}, 1H NMR (CDCl_3) & 6.18 (H^{2}), 4.88 (CO) (CH_2CO_2 Pt)^{f} IR vc_{00}1996 cm^{-1}, v_{10}1702 cm^{-1}, v_{20-0}1096, 1120 cm^{-1}, 1H NMR (CDCl_3) & 6.38 (d, 4.9 \text{ Hz}, 1H, 1H^2), 2.86 (t, 5.1, 5.9 \text{ Hz}, 6H, NCH_1), 1.13 (d, 7.0 \text{ Hz}, 1H, 1H), 4.88 (d, 2.0 \text{ Hz}, 1H, 1H, 2H, 2H, 1H), 1.13 (d, 7.0 \text{ Hz}, 1H, 1H), 2.88 (t, 5.9 \text{ Hz}, 6H, 0CH_1), 3.83 (d, 2.0 \text{ Hz}, 1H, 1H), 3.83 (d, 2.0 H$	12 ^e	IR ν_{CN} 2240 cm ⁻¹ . ¹ H NMR (CDCl ₃) δ 6.40 (d, 4.6 Hz, 1H, H ²), 6.01 (m, 1H,
$ \begin{split} \text{isomer}, 3.80 (t, 5, 9 \text{ Hz}, 6\text{H}, OCH_2 \text{ minor isomer}, 3.55 (d, 1.8 \text{ Hz}, 1\text{H}, C\text{H} mior isomer}, 3.55 (d, 1.7, 1\text{Hz}, 2\text{H}, 0\text{CH} mior isomer}, 3.55 (d, 1.7, 1\text{Hz}, 2\text{H}, 0\text{CH} mior isomer}), 2.78 (t, 5.9 \text{ Hz}, 6\text{H}, NCH_2 mior isomer}), 2.78 (t, 5.9 \text{ Hz}, 6\text{H}, NCH_2 mior isomer}), 2.45 (t, 6.5 \text{ Hz}, 1\text{H}, 4^m mior isomer}), 2.78 (t, 5.9 \text{ Hz}, 6\text{H}, NCH_2 mior isomer}), 2.78 (t, 5.79 \text{ Hz}, 6\text{H}, NCH_2 mior isomer}), 2.78 (t, 5.79 \text{ Hz}, 6\text{H}, NCH_2 mior isomer}), 2.78 (t, 5.79 \text{ Hz}, 5\text{H}, Me mior isomer)}, 0.93 (d, 7.1 \text{ Hz}, 3\text{H}, Me major isomer)}, 0.93 (d, 7.1 \text{ Hz}, 3\text{H}, Me major isomer)}, 0.93 (d, 7.1 \text{ Hz}, 3\text{H}, Me major isomer)}, 0.93 (d, 7.1 \text{ Hz}, 3\text{ H}, Me major isomer)}, 0.93 (d, 7.1 \text{ Hz}, 3\text{ H}, Me major isomer)}, 0.93 (d, 7.1 \text{ Hz}, 3\text{ H}, Me major isomer)}, 0.93 (d, 7.1 \text{ Hz}, 3\text{ H}, Me major isomer)}, 0.93 (d, 7.1 \text{ Hz}, 3\text{ H}, Me major isomer)}, 0.93 (d, 7.1 \text{ Hz}, 3\text{ H}, Me major isomer)}, 0.93 (d, 7.1 \text{ Hz}, 3\text{ H}, Me major isomer)}, 0.93 (d, 7.1 \text{ Hz}, 3\text{ H}, Me major isomer)}, 0.93 (d, 7.1 \text{ Hz}, 3\text{ H}, Me) (DC) (DC) (DC) (DC) (DC) (DC) (DC) (DC$		H ³), 5.63 (d, 9.8 Hz, 1H, H ⁴ minor isomer), 5.31 (d, 9.8 Hz, 1H, H ⁴ major
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		isomer), 4.27 (q, 7.3 Hz, 2H, CH ₂), 3.82 (t, 5.9 Hz, 6H, OCH ₂ major
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		isomer), 3.80 (t, 5.9 Hz, 6H, OCH ₂ minor isomer), 3.56 (d, 8.8 Hz, 1H, CH
$ \begin{split} \text{isomer}, 2.45 (t, 6.5 Hz, 1H, H5 minor isomer), 1.33 (t, 7.1 Hz, 3H, Me minor isomer), 0.94 (d, 7.1 Hz, 3H, Me major isomer), 0.95 (d, 15.6 Hz, 1H, 1Ch2), 3.43 (t, 6.0 Hz, 1H, 1H, 1H, 1H, 1Ch2), 3.45 (t, 5.26 Hz, 6H, NCH2), 2.55 (d, 15.6 Hz, 1H, 1Ch2), 3.43 (t, 6.0 Hz, 1H, 1H, 1H, 1H, 1H, 1H, 1H, 1H, 1H, 1H$		minor isomer), 3.53 (d, 11.7 Hz, 1H, CH major isomer), 3.15 (m, 1H, H ⁶),
		2.85 (t, 5.9 Hz, 6H, NCH ₂ minor isomer), 2.78 (t, 5.9 Hz, 6H, NCH ₂ major
$ \begin{split} 13(C(O)CH_2CN) & \text{IR } \nu_{CN} 2240 \text{cm}^{-1}, \nu_{CO} 2000 \text{cm}^{-1}, \nu_{NO} 1725 \text{cm}^{-1}, \nu_{CO} 1620 \text{cm}^{-1}, ^{1} \text{H NMR} \\ & (CDCl_3) \delta 6 (25 (i, 4.5 \text{Hz}, 1\text{H}, H^3), 4.89 (m, 2\text{H}, H^{24}), 3.79 (i, 5.06 \text{Hz}, 61\text{Hz}, 61\text{Hz}$		minor isomer), 1.31 (t, 7.1 Hz, 3H, Me major isomer), 0.94 (d, 7.1 Hz, 3H,
		Me major isomer), 0.93 (d, 7.1 Hz, 3H, Me major isomer) ppm.
	13(C(O)CH ₂ CN)	IR $\nu_{\rm CN}$ 2240 cm ⁻¹ , $\nu_{\rm CO}$ 2000 cm ⁻¹ , $\nu_{\rm NO}$ 1725 cm ⁻¹ , $\nu_{\rm C=O}$ 1620 cm ⁻¹ . ¹ H NMR
		$(CDCl_3) \delta 6.25$ (t, 4.5 Hz, 1H, H ³), 4.89 (m, 2H, H ^{2.4}), 3.79 (t, 5.86 Hz,
		6H, OCH ₂), 3.64 (1H, CH ₂), 3.55 (d, 15.6 Hz, 1H, CH ₂), 3.43 (t, 6.0 Hz, 1H,
		H ⁶), 2.84 (t, 5.86 Hz, 6H, NCH ₂), 2.51 (t, 6.0 Hz, 1H, H ⁶), 0.48 (d,
$ \begin{split} 13(C(O)CH_2CO_2tBu)^{f} & \text{IR } \nu_{C0} 1995 \text{cm}^{-1}, \nu_{NO} 1723 \text{cm}^{-1}, \nu_{C=O} 1620 \text{cm}^{-1}, ^{1}\text{H NMR (CDCl}_3) \delta 6.18 (\text{H}^2), \\ 4.88 (\text{H}^{3,4}), 3.68 (\text{CH}_2), 3.40 (\text{H}^3) \text{pm}. \\ 13(C(O)CH_2CO_2PT)^{f} & \text{IR } \nu_{C0} 1990 \text{cm}^{-1}, \nu_{C=O} 1018 \text{cm}^{-1}, \nu_{Si=O} 1098, 1120 \text{cm}^{-1}, ^{1}\text{H} \\ \text{NMR (CD}_3Cl) \delta 6.19 (\text{H}^2), 4.88 (^{3,4}), 3.4 (\text{H}^5), 3.74 (\text{CH}_2), 0.48 (\text{Me}) \text{pm}. \\ 15(C(O)CH_2CN) & \text{IR } \nu_{CN} 2248 \text{cm}^{-1}, \nu_{C=O} 1705 \text{cm}^{-1}, \nu_{Si=O} 1092, 1121 \text{cm}^{-1}, ^{1}\text{H} \text{NMR (CDCl}_3) \delta \\ 6.38 (d, 4, 94 \text{Hz}, 11 \text{H}^2), 6.11 (\text{dd}, 1, 0, 5.1, 9.4 \text{Hz}, 1\text{H}, 1^3), 5.53 (\text{dd}, 1, 0, 6.4, 9.4 \text{Hz}, 11 \text{H}^2), 6.11 (\text{dd}, 1, 0, 5.1, 9.4 \text{Hz}, 11 \text{H}^3), 5.53 (\text{dd}, 1, 0, 6.4, 9.4 \text{Hz}, 11 \text{H}^2), 2.68 (d, 7.1 \text{Hz}, 11 \text{H}^2), 2.08 (d, 20 \text{Hz}, 11 \text{H}, 10^2, 10, 3.82 (t, 5.8 \text{Hz}, 6 \text{H}, OCH_2), 3.80 (d, 20 \text{Hz}, 11 \text{H}, 10^2, 1.72 (_{16} \text{Hz}_2N_2) \text{Qs} \text{icale:} (-5, 57.46; \text{H}, 6.63; N, 8.38\%, \text{HRMS Foun:} 266.1220 \text{M}^+ - C(OCH_2CN \text{cale:} : 226.1220. \\ \text{Mp 143.4^{\circ}C}. \text{IR } \nu_{CO, CO2} 1730, 1702 \text{cm}^{-1}, \nu_{Si=O} 1100, 1128 \text{cm}^{-1}, ^1 \text{H NMR} (CD_3Cl) \delta 6.55 (\text{dd}, 1.0, 4.9 \text{Hz}, 11 \text{H}, 2^3), 6.01 (\text{ddd}, 0.6, 4.9, 9.8 \text{Hz}, 11 \text{H}^3), 5.62 (\text{dd}, 6.2, 9.4 \text{Hz}, 11 \text{H}^3), 3.20 (\text{c}, 7.0 \text{Hz}, 38 \text{HZ}, 11 \text{H}^3), 2.28 (\text{(L}, 5.9 \text{Hz}, 61 \text{OCH}_2), 3.51 (\text{dd}, 16.3 \text{Hz}, 11 \text{(CD}_2), 145.7 (\text{C}^3), 126.42 (\text{C}^2), 126.82 (\text{C}^3), 10.00 (\text{d}, 7.0 \text{Hz}, 314, \text{M} \text{ppm}. \\ ^{13}C \text{NMR} (CD_3Cl) \delta 6.36 (\text{d}, 4.9 \text{Hz}, 11 \text{H}^3), 3.30 (\text{c}, 5.8 \text{HZ}, 14 \text{H}^3), 3.28 (\text{c}, 5.8 \text{HZ}, 14 \text{H}^3), 3.28 (\text{c}, 5.8 \text{HZ}, 14 \text{H}^3), 3.28 (\text{c}, 5.8 \text{HZ}, 14 \text{HZ}^3), 1.216.82 (\text{C}^3), 120.87 (\text{C}^3), 120.87 (\text{C}^3), 120.87 (\text{C}^3), 120.87 (\text{C}^3), 120.87 (\text$		
$13(C(O)CH_{2}CO_{2}Pr)^{f}$ $18(C(O)CH_{2}CO_{2}Pr)^{f}$ $18(C(O)CH_{2}CO_{2}Pr)^{f}$ $18(C(O)CH_{2}CN)$ $15(C(O)CH_{2}CN)$ $18(C_{2}(O)CH_{2}CN)$ $18(C)CN)$ $18(C)$		C ₁₇ H ₂₂ MnN ₃ O ₆ Si calc.: C, 45.64; H, 4.95; N, 9.39%.
$13(C(O)CH_{2}CO_{2}Pr)^{f}$ $18(C(O)CH_{2}CO_{2}Pr)^{f}$ $18(C(O)CH_{2}CO_{2}Pr)^{f}$ $18(C(O)CH_{2}CN)$ $15(C(O)CH_{2}CN)$ $18(C_{2}(O)CH_{2}CN)$ $18(C)CN)$ $18(C)$	$13(C(O)CH_2CO_2tBu)^{f}$	IR ν_{CO} 1995 cm ⁻¹ , ν_{NO} 1723 cm ⁻¹ , $\nu_{C=O}$ 1620 cm ⁻¹ . ¹ H NMR (CDCl ₃) δ 6.18 (H ²),
$ 15(C(O)CH_2CN) $ $ NMR (CD_3CI) \delta 6.19 (H^2), 4.88 (^{3.4}), 3.4 (H^5), 3.74 (CH_2), 0.48 (Me) ppm. \\ IR \nu_{CN} 2248 \text{ cm}^{-1}, \nu_{C=0} 1705 \text{ cm}^{-1}, \nu_{Bi=0} 1092, 1121 \text{ cm}^{-1}.^{1}H NMR (CDCI_3) \delta \\ 6.38 (d, 4.9 Hz, 1H, H^2), 6.11 (ddd, 1.0, 5.1, 9.4 Hz, 1H, H^3), 5.53 (ddd, \\ 1.0, 6.4, 9.4 Hz, 1H, H^4), 4.08 (d, 20 Hz, 1H, CH_2CN), 3.82 (t, 5.8 Hz, 6 \\ H, OCH_2), 3.80 (d, 20 Hz, 1H, CH_2CN), 2.95 (d, 6.3 Hz, 1H, H^5), 2.86 (t, \\ 5.9 Hz, 6H, NCH_2), 2.68 (a, 7.1 Hz, 1H, H^6), 1.13 (d, 7.0 Hz, 3H, Me) \\ ppm. Anal. Found: C, 57.05; H, 6.67; N, 9.17. C_{16}H_{22}N_2O_4Si calc:: C, 57.46: \\ H, 6.63; N, 8.38\%. HRMS Foun: 266.1220. M^+ - C(O)CH_2CN calc:: 226.1220. \\ Mp 143.4°C. IR \nu_{CO, CO2} 1730, 1702 \text{ cm}^{-1}, \nu_{Si=0} 1100, 1128 \text{ cm}^{-1}.^{1}H NMR \\ (CD_3CI) \delta 6.35 (dd, 1.0, 4.9 Hz, 1H, H^2), 6.01 (ddd, 0.6, 4.9, 9.8 Hz, 1H, \\ H^3), 5.62 (dd, 6.2, 9.4 Hz, 1H, H^4), 5.01 (ddd, 0.6, 4.9, 9.8 Hz, 1H, \\ H^3), 5.62 (dd, 6.2, 9.4 Hz, 1H, H^4), 5.01 (ddd, 0.6, 4.9, 9.8 Hz, 1H, \\ H^3), 5.61 (dd, 6.2, 9.4 Hz, 1H, H^4), 5.01 (ddd, 0.6, 4.9, 9.8 Hz, 1H, \\ H^3), 5.61 (dd, 5.9 Hz, 6H, NCH_2), 1.45 (s, Bu), 1.12 (d, 7.0 Hz, 3H, Me) ppm. \\ ^{13}C NMR (CD_3CI) \delta 205.4 (C=O), 167.61 (CO_2), 145.7 (C^1), 128.44 (C^2), 126.82 (C^3), 120.81 (C^4), 80.96 (CMe_3), 57.68 (OCH_2), 5.45.0 (CH_2), 51.15 (NCH_2), \\ 47.90 (C^5), 31.97 (C^6), 28.02 (C(CH_3)_3). 19.19 (CH_3) ppm. Anal. Found: C, \\ 58.65; H, 7.63; N, 3.42. C_{20}H_{31}NO_6Si calc:: C, 58.14; H, 7.54; N, 3.13\%. \\ 15(C(O)CH_2CO_2iPr) Mp 104.4°C. IR \nu_{CO,CO2} 1737, 1705 \text{ cm}^{-1}, \nu_{Si=0} 11000br) \text{ cm}^{-1}.^{1}H NMR (CD_3CI) \delta 6.36 (d, 4.9 Hz, 1H, H^4), 6.08 (ddd, 0.6, 4.9, 9.4 Hz, 1H, H^3), \\ 5.61 (dd, 6.2, 9.4 Hz, 1H, H^4), 5.03 (d, 1.68 Hz, 1H, CH_2), 2.91 (d, 5.9 Hz, 1H, H^5), 2.83 (t, 5.8 Hz, 6H, NCH_2), 1.23 (d, 6.2 Hz, 6H, CCH_2), 5.46 (CQ_2), 16.93 (C^3), 120.67 (C^4), 68.18 (CHMe_2), 5.7.67 (CCH_2), 54.60 (CH_2), 51.14 (NCH_2), 4.684 (C^5), 31.97 (C^5), 21.77 (CMe_2), 19.20 (CH_3) ppm. Anal. Found: C, 57.70; H, 7.39; N, 3.54. C_{19}H_{26}N$		$4.88 (H^{3,4}), 3.68 (CH_2), 3.40 (H^5) ppm.$
$ 15(C(O)CH_2CN) $ $ NMR (CD_3CI) \delta 6.19 (H^2), 4.88 (^{3.4}), 3.4 (H^5), 3.74 (CH_2), 0.48 (Me) ppm. \\ IR \nu_{CN} 2248 \text{ cm}^{-1}, \nu_{C=0} 1705 \text{ cm}^{-1}, \nu_{Bi=0} 1092, 1121 \text{ cm}^{-1}.^{1}H NMR (CDCI_3) \delta \\ 6.38 (d, 4.9 Hz, 1H, H^2), 6.11 (ddd, 1.0, 5.1, 9.4 Hz, 1H, H^3), 5.53 (ddd, \\ 1.0, 6.4, 9.4 Hz, 1H, H^4), 4.08 (d, 20 Hz, 1H, CH_2CN), 3.82 (t, 5.8 Hz, 6 \\ H, OCH_2), 3.80 (d, 20 Hz, 1H, CH_2CN), 2.95 (d, 6.3 Hz, 1H, H^5), 2.86 (t, \\ 5.9 Hz, 6H, NCH_2), 2.68 (a, 7.1 Hz, 1H, H^6), 1.13 (d, 7.0 Hz, 3H, Me) \\ ppm. Anal. Found: C, 57.05; H, 6.67; N, 9.17. C_{16}H_{22}N_2O_4Si calc:: C, 57.46: \\ H, 6.63; N, 8.38\%. HRMS Foun: 266.1220. M^+ - C(O)CH_2CN calc:: 226.1220. \\ Mp 143.4°C. IR \nu_{CO, CO2} 1730, 1702 \text{ cm}^{-1}, \nu_{Si=0} 1100, 1128 \text{ cm}^{-1}.^{1}H NMR \\ (CD_3CI) \delta 6.35 (dd, 1.0, 4.9 Hz, 1H, H^2), 6.01 (ddd, 0.6, 4.9, 9.8 Hz, 1H, \\ H^3), 5.62 (dd, 6.2, 9.4 Hz, 1H, H^4), 5.01 (ddd, 0.6, 4.9, 9.8 Hz, 1H, \\ H^3), 5.62 (dd, 6.2, 9.4 Hz, 1H, H^4), 5.01 (ddd, 0.6, 4.9, 9.8 Hz, 1H, \\ H^3), 5.61 (dd, 6.2, 9.4 Hz, 1H, H^4), 5.01 (ddd, 0.6, 4.9, 9.8 Hz, 1H, \\ H^3), 5.61 (dd, 5.9 Hz, 6H, NCH_2), 1.45 (s, Bu), 1.12 (d, 7.0 Hz, 3H, Me) ppm. \\ ^{13}C NMR (CD_3CI) \delta 205.4 (C=O), 167.61 (CO_2), 145.7 (C^1), 128.44 (C^2), 126.82 (C^3), 120.81 (C^4), 80.96 (CMe_3), 57.68 (OCH_2), 5.45.0 (CH_2), 51.15 (NCH_2), \\ 47.90 (C^5), 31.97 (C^6), 28.02 (C(CH_3)_3). 19.19 (CH_3) ppm. Anal. Found: C, \\ 58.65; H, 7.63; N, 3.42. C_{20}H_{31}NO_6Si calc:: C, 58.14; H, 7.54; N, 3.13\%. \\ 15(C(O)CH_2CO_2iPr) Mp 104.4°C. IR \nu_{CO,CO2} 1737, 1705 \text{ cm}^{-1}, \nu_{Si=0} 11000br) \text{ cm}^{-1}.^{1}H NMR (CD_3CI) \delta 6.36 (d, 4.9 Hz, 1H, H^4), 6.08 (ddd, 0.6, 4.9, 9.4 Hz, 1H, H^3), \\ 5.61 (dd, 6.2, 9.4 Hz, 1H, H^4), 5.03 (d, 1.68 Hz, 1H, CH_2), 2.91 (d, 5.9 Hz, 1H, H^5), 2.83 (t, 5.8 Hz, 6H, NCH_2), 1.23 (d, 6.2 Hz, 6H, CCH_2), 5.46 (CQ_2), 16.93 (C^3), 120.67 (C^4), 68.18 (CHMe_2), 5.7.67 (CCH_2), 54.60 (CH_2), 51.14 (NCH_2), 4.684 (C^5), 31.97 (C^5), 21.77 (CMe_2), 19.20 (CH_3) ppm. Anal. Found: C, 57.70; H, 7.39; N, 3.54. C_{19}H_{26}N$	$13(C(O)CH_2CO_2Pr)^f$	IR ν_{CO} 1980 cm ⁻¹ , ν_{NO} 1720 cm ⁻¹ , $\nu_{C=O}$ 1618 cm ⁻¹ , ν_{Si-O} 1098, 1120 cm ⁻¹ . ¹ H
		NMR (CD ₂ Cl) δ 6.19 (H ²), 4.88 (^{3,4}), 3.4 (H ⁵), 3.74 (CH ₂), 0.48 (Me) ppm.
	$15(C(O)CH_2CN)$	IR $\nu_{\rm CN}$ 2248 cm ⁻¹ , $\nu_{\rm C=0}$ 1705 cm ⁻¹ , $\nu_{\rm Si-O}$ 1092, 1121 cm ⁻¹ . ¹ H NMR (CDCl ₃) δ
$ 1.0, 6.4, 9.4 Hz, 1H, H^4), 4.08 (d, 20 Hz, 1H, CH_2CN), 3.82 (t, 5.8 Hz, 6 H, OCH_2), 3.80 (d, 20 Hz, 1H, CH_2CN), 2.95 (d, 6.3 Hz, 1H, H^3), 2.86 (t, 5.9 Hz, 6H, NCH_2), 2.68 (q, 7.1 Hz, 1H, H^6), 1.13 (d, 7.0 Hz, 3H, Me) ppm. Anal. Found: C, 57.05; H, 6.67; N, 9.17. CL16H22N2O4Si calc.: C, 57.46: H, 6.63; N, 8.38%. HRMS Foun: 266.1220. M+ – C(O)CH2CN calc.: 226.1220. Mp 143.4°C. IR \nu_{CO, CO2} 1730, 1702 cm-1, \nu_{Si-O} 1100, 1128 cm-1. 1H NMR (CD3CI) \delta 6.35 (dd, 1.0, 4.9 Hz, 1H, H4), 8.01 (ddd, 0.6, 4.9, 9.8 Hz, 1H, H3), 5.62 (dd, 6.2, 9.4 Hz, 1H, H4), 3.00 (t, 5.9 Hz, 6H, OCH2), 3.61 (d, 16.3 Hz, 1H, CH2), 3.53 (d, 16.3 Hz, 1H, CH2), 3.53 (d, 16.3 Hz, 1H, CH2), 3.53 (d, 16.3 Hz, 1H, CH2), 3.45 (CO2), 145.7 (C1), 128.44 (C2), 126.82 (C3), 120.81 (C4), 80.96 (CMe3), 57.68 (OCH2), 54.50 (CH2), 51.15 (NCH2), 47.90 (C5), 31.97 (C6), 28.02 (C(CH3)3), 19.19 (CH3) ppm. Anal. Found: C, 58.65; H, 7.63; N, 3.42. C20H31NO6Si calc.: C, 58.14; H, 7.54; N, 3.13%. Mp 104.4°C. IR \nu_{CO, CO2} 1737, 1705 cm-1, \nu_{Si-O} 1100/tor cm-1. 1H NMR (CD3CI) \delta 6.36 (d, 4.9 Hz, 1H, H4), 5.03 (d, 16.8 Hz, 1H, T.54; N, 3.13%. Mp 104.4°C. IR \nu_{CO, CO2} 1737, 1705 cm-1, \nu_{Si-O} 1100/tor cm-1. 1H NMR (CD3CI) \delta 6.36 (d, 4.9 Hz, 1H, H4), 5.03 (d, 16.8 Hz, 1H, H3), 5.61 (dd, 6.2, 9.4 Hz, 1H, H4), 5.03 (m, CHMe2), 3.80 (t, 5.8 Hz, 6H, OCH2), 3.69 (d, 16.8 Hz, 1H, CH2), 3.60 (t, 5.8 Hz, 6H, OCH2), 2.91 (d, 5.9 Hz, 1H, H4), 2.83 (t, 5.8 Hz, 6H, NCH2), 1.23 (d, 6.2 Hz, 6H, CHMe2), 1.12 (d, 7.1 Hz, 3H, Me) ppm. 13C NMR (CD3CI) \delta 20.51 (C=O3), 167.92 (CO2), 145.75 (C3), 128.42 (C2), 126.93 (C3), 120.67 (C4), 68.18 (CHMe2), 57.67 (OCH2), 54.60 (CH2), 51.14 (NCH2), 46.84 (C5), 31.97 (C5), 21.77 (CMe2), 1.22 (CC1), 128.42 (C2), 126.93 (C3), 120.67 (C4), 68.18 (CHMe2), 57.67 (OCH2), 54.60 (CH2), 51.14 (NCH2), 46.84 (C5), 31.97 (C5), 21.77 (CMe2), 19.20 (CH3) ppm. Anal. F$	-	6.38 (d, 4.9 Hz, 1H, H ²), 6.11 (ddd, 1.0, 5.1, 9.4 Hz, 1H, H ³), 5.53 (ddd,
		H, OCH ₂), 3.80 (d, 20 Hz, 1H, CH ₂ CN), 2.95 (d, 6.3 Hz, 1H, H ⁵), 2.86 (t,
		5.9 Hz, 6H, NCH ₂), 2.68 (q, 7.1 Hz, 1H, H ⁶), 1.13 (d, 7.0 Hz, 3H, Me)
		ppm. Anal. Found: C, 57.05; H, 6.67; N, 9.17. C ₁₆ H ₂₂ N ₂ O ₄ Si calc.: C, 57.46:
$(CD_{3}Cl) \delta 6.35 (dd, 1.0, 4.9 Hz, 1H, H^{2}), 6.01 (ddd, 0.6, 4.9, 9.8 Hz, 1H, H^{3}), 5.62 (dd, 6.2, 9.4 Hz, 1H, H^{4}), 3.80 (t, 5.9 Hz, 6H, OCH_{2}), 3.61 (d, 16.3 Hz, 1H, CH_{2}), 3.53 (d, 16.3 Hz, 1H, CH_{2}), 3.00 (d, 7.0 Hz, 1H, H^{5}), 2.83 (t, 5.9 Hz, 6H, NCH_{2}), 1.45 (s, Bu), 1.12 (d, 7.0 Hz, 3H, Me) ppm. 13C NMR (CD_{3}Cl) \delta 205.4 (C=O), 167.61 (CO2), 145.7 (C1), 128.44 (C2), 126.82 (C3), 120.81 (C4), 80.96 (CMe_{3}), 57.68 (OCH_{2}), 54.50 (CH_{2}), 51.15 (NCH_{2}), 47.90 (C5), 31.97 (C6), 28.02 (C(CH_{3})_{3}). 19.19 (CH_{3}) ppm. Anal. Found: C, 58.65; H, 7.63; N, 3.42. C20H31NO6Si calc.: C, 58.14; H, 7.54; N, 3.13%.15(C(O)CH2CO2iPr) Mp 104.4°C. IR \nu_{CO,CO2} 1737, 1705 cm-1, \nu_{Si-O} 1100(br) cm-1. 1H NMR (CD3Cl) \delta 6.36 (d, 4.9 Hz, 1H, H2), 6.08 (dd, 0.6, 4.9, 9.4 Hz, 1H, H3), 5.61 (dd, 6.2, 9.4 Hz, 1H, H4), 5.03 (m, CHMe_{2}), 3.80 (t, 5.8 Hz, 6H, OCH2), 3.69 (d, 16.8 Hz, 1H, CH2), 2.91 (d, 5.9 Hz, 1H, H5), 2.83 (t, 5.8 Hz, 6H, NCH2), 1.23 (d, 6.2 Hz, 6H, CHMe2), 1.12 (d, 7.1 Hz, 3H, Me) ppm. 13C NMR (CD3Cl) \delta 205.1 (C=O), 167.92 (CO2), 145.75 (C1), 128.42 (C2), 126.93 (C3), 120.67 (C4), 68.18 (CHMe2), 57.67 (OCH2), 54.60 (CH2), 51.14 (NCH2), 46.84 (C5), 31.97 (C5), 21.77 (CMe2), 19.20 (CH3) ppm. Anal. Found: C, 57.70; H, 7.39; N, 3.54. C19H26NO6Si calc.:$		
$(CD_{3}Cl) \delta 6.35 (dd, 1.0, 4.9 Hz, 1H, H^{2}), 6.01 (ddd, 0.6, 4.9, 9.8 Hz, 1H, H^{3}), 5.62 (dd, 6.2, 9.4 Hz, 1H, H^{4}), 3.80 (t, 5.9 Hz, 6H, OCH_{2}), 3.61 (d, 16.3 Hz, 1H, CH_{2}), 3.53 (d, 16.3 Hz, 1H, CH_{2}), 3.00 (d, 7.0 Hz, 1H, H^{5}), 2.83 (t, 5.9 Hz, 6H, NCH_{2}), 1.45 (s, Bu), 1.12 (d, 7.0 Hz, 3H, Me) ppm. 13C NMR (CD_{3}Cl) \delta 205.4 (C=O), 167.61 (CO2), 145.7 (C1), 128.44 (C2), 126.82 (C3), 120.81 (C4), 80.96 (CMe_{3}), 57.68 (OCH_{2}), 54.50 (CH_{2}), 51.15 (NCH_{2}), 47.90 (C5), 31.97 (C6), 28.02 (C(CH_{3})_{3}). 19.19 (CH_{3}) ppm. Anal. Found: C, 58.65; H, 7.63; N, 3.42. C20H31NO6Si calc.: C, 58.14; H, 7.54; N, 3.13%.15(C(O)CH2CO2iPr) Mp 104.4°C. IR \nu_{CO,CO2} 1737, 1705 cm-1, \nu_{Si-O} 1100(br) cm-1. 1H NMR (CD3Cl) \delta 6.36 (d, 4.9 Hz, 1H, H2), 6.08 (dd, 0.6, 4.9, 9.4 Hz, 1H, H3), 5.61 (dd, 6.2, 9.4 Hz, 1H, H4), 5.03 (m, CHMe_{2}), 3.80 (t, 5.8 Hz, 6H, OCH2), 3.69 (d, 16.8 Hz, 1H, CH2), 2.91 (d, 5.9 Hz, 1H, H5), 2.83 (t, 5.8 Hz, 6H, NCH2), 1.23 (d, 6.2 Hz, 6H, CHMe2), 1.12 (d, 7.1 Hz, 3H, Me) ppm. 13C NMR (CD3Cl) \delta 205.1 (C=O), 167.92 (CO2), 145.75 (C1), 128.42 (C2), 126.93 (C3), 120.67 (C4), 68.18 (CHMe2), 57.67 (OCH2), 54.60 (CH2), 51.14 (NCH2), 46.84 (C5), 31.97 (C5), 21.77 (CMe2), 19.20 (CH3) ppm. Anal. Found: C, 57.70; H, 7.39; N, 3.54. C19H26NO6Si calc.:$	15(C(O)CH₂CO₂tBu)	Mp 143.4°C. IR $\nu_{CO, CO2}$ 1730, 1702 cm ⁻¹ , ν_{Si-O} 1100, 1128 cm ⁻¹ . ¹ H NMR
$16.3 Hz, 1H, CH_2), 3.53 (d, 16.3 Hz, 1H, CH_2), 3.00 (d, 7.0 Hz, 1H, H5), 2.83 (t, 5.9 Hz, 6H, NCH_2), 1.45 (s, Bu), 1.12 (d, 7.0 Hz, 3H, Me) ppm. 13C NMR (CD3Cl) & 205.4 (C=O), 167.61 (CO2), 145.7 (C1), 128.44 (C2), 126.82 (C3), 120.81 (C4), 80.96 (CMe3), 57.68 (OCH2), 54.50 (CH2), 51.15 (NCH2), 47.90 (C5), 31.97 (C6), 28.02 (C(CH3)3). 19.19 (CH3) ppm. Anal. Found: C, 58.65; H, 7.63; N, 3.42. C20H31NO6Si calc.: C, 58.14; H, 7.54; N, 3.13%. 15(C(O)CH2CO2iPr) Mp 104.4°C. IR \nu_{CO,CO2} 1737, 1705 cm-1, \nu_{Si-O} 1100(br) cm-1. 1H NMR (CD3Cl) & 6.36 (d, 4.9 Hz, 1H, H2), 6.08 (ddd, 0.6, 4.9, 9.4 Hz, 1H, H3), 5.61 (dd, 6.2, 9.4 Hz, 1H, H4), 5.03 (m, CHMe2), 3.80 (t, 5.8 Hz, 6H, OCH2), 3.69 (d, 16.8 Hz, 1H, CH2), 3.63 (d, 16.8 Hz, 1H, CH2), 2.91 (d, 5.9 Hz, 1H, H5), 2.83 (t, 5.8 Hz, 6H, NCH2), 1.22 (d, 6.2 Hz, 6H, CHMe2), 1.12 (d, 7.1 Hz, 3H, Me) ppm. 13C NMR (CD3Cl) & 205.1 (C=O), 167.92 (CO2), 145.75 (C1), 128.42 (C2), 126.93 (C3), 120.67 (C4), 68.18 (CHMe2), 57.67 (OCH2), 54.60 (CH2), 51.14 (NCH2), 46.84 (C5), 31.97 (C5), 21.77 (CMe2), 19.20 (CH3) ppm. Anal. Found: C, 57.70; H, 7.39; N, 3.54. C19H26NO6Si calc.:$		$(CD_3Cl) \delta$ 6.35 (dd, 1.0, 4.9 Hz, 1H, H ²), 6.01 (ddd, 0.6, 4.9, 9.8 Hz, 1H,
$\begin{array}{llllllllllllllllllllllllllllllllllll$		H ³), 5.62 (dd, 6.2, 9.4 Hz, 1H, H ⁴), 3.80 (t, 5.9 Hz, 6H, OCH ₂), 3.61 (d,
		16.3 Hz, 1H, CH ₂), 3.53 (d, 16.3 Hz, 1H, CH ₂), 3.00 (d, 7.0 Hz, 1H, H ⁵),
$ (C^{3}), 120.81 (C^{4}), 80.96 (CMe_{3}), 57.68 (OCH_{2}), 54.50 (CH_{2}), 51.15 (NCH_{2}), 47.90 (C^{5}), 31.97 (C^{6}), 28.02 (C(CH_{3})_{3}). 19.19 (CH_{3}) ppm. Anal. Found: C, 58.65; H, 7.63; N, 3.42. C_{20}H_{31}NO_{6}Si calc.: C, 58.14; H, 7.54; N, 3.13%.15(C(O)CH_{2}CO_{2}iPr) Mp 104.4°C. IR \nu_{CO,CO2} 1737, 1705 cm-1, \nu_{Si-O} 1100(br) cm-1. 1H NMR(CD3Cl) \delta 6.36 (d, 4.9 Hz, 1H, H2), 6.08 (ddd, 0.6, 4.9, 9.4 Hz, 1H, H3),5.61 (dd, 6.2, 9.4 Hz, 1H, H4), 5.03 (m, CHMe_{2}), 3.80 (t, 5.8 Hz, 6H,OCH2), 3.69 (d, 16.8 Hz, 1H, CH2), 3.63 (d, 16.8 Hz, 1H, CH2), 2.91 (d,5.9 Hz, 1H, H5), 2.83 (t, 5.8 Hz, 6H, NCH2), 1.23 (d, 6.2 Hz, 6H, CHMe2),1.12 (d, 7.1 Hz, 3H, Me) ppm. 13C NMR (CD3Cl) \delta 205.1 (C=O), 167.92 (CO2),145.75 (C1), 128.42 (C2), 126.93 (C3), 120.67 (C4), 68.18 (CHMe2), 57.67(OCH2), 54.60 (CH2), 51.14 (NCH2), 46.84 (C5), 31.97 (C5), 21.77 (CMe2),19.20 (CH3) ppm. Anal. Found: C, 57.70; H, 7.39; N, 3.54. C_{19}H_{26}NO_{6}Si calc.:$		
$ (C^{3}), 120.81 (C^{4}), 80.96 (CMe_{3}), 57.68 (OCH_{2}), 54.50 (CH_{2}), 51.15 (NCH_{2}), 47.90 (C^{5}), 31.97 (C^{6}), 28.02 (C(CH_{3})_{3}). 19.19 (CH_{3}) ppm. Anal. Found: C, 58.65; H, 7.63; N, 3.42. C_{20}H_{31}NO_{6}Si calc.: C, 58.14; H, 7.54; N, 3.13%.15(C(O)CH_{2}CO_{2}iPr) Mp 104.4°C. IR \nu_{CO,CO2} 1737, 1705 cm-1, \nu_{Si-O} 1100(br) cm-1. 1H NMR(CD3Cl) \delta 6.36 (d, 4.9 Hz, 1H, H2), 6.08 (ddd, 0.6, 4.9, 9.4 Hz, 1H, H3),5.61 (dd, 6.2, 9.4 Hz, 1H, H4), 5.03 (m, CHMe_{2}), 3.80 (t, 5.8 Hz, 6H,OCH2), 3.69 (d, 16.8 Hz, 1H, CH2), 3.63 (d, 16.8 Hz, 1H, CH2), 2.91 (d,5.9 Hz, 1H, H5), 2.83 (t, 5.8 Hz, 6H, NCH2), 1.23 (d, 6.2 Hz, 6H, CHMe2),1.12 (d, 7.1 Hz, 3H, Me) ppm. 13C NMR (CD3Cl) \delta 205.1 (C=O), 167.92 (CO2),145.75 (C1), 128.42 (C2), 126.93 (C3), 120.67 (C4), 68.18 (CHMe2), 57.67(OCH2), 54.60 (CH2), 51.14 (NCH2), 46.84 (C5), 31.97 (C5), 21.77 (CMe2),19.20 (CH3) ppm. Anal. Found: C, 57.70; H, 7.39; N, 3.54. C_{19}H_{26}NO_{6}Si calc.:$		¹³ C NMR (CD ₃ Cl) δ 205.4 (C=O), 167.61 (CO ₂), 145.7 (C ¹), 128.44 (C ²), 126.82
		(C^3) , 120.81 (C^4) , 80.96 (CMe_3) , 57.68 (OCH_2) , 54.50 (CH_2) , 51.15 (NCH_2) ,
15 (C(O)CH ₂ CO ₂ <i>i</i> Pr) Mp 104.4°C. IR $\nu_{CO, CO2}$ 1737, 1705 cm ⁻¹ , ν_{Si-O} 1100(br) cm ⁻¹ . ¹ H NMR (CD ₃ Cl) δ 6.36 (d, 4.9 Hz, 1H, H ²), 6.08 (ddd, 0.6, 4.9, 9.4 Hz, 1H, H ³), 5.61 (dd, 6.2, 9.4 Hz, 1H, H ⁴), 5.03 (m, CHMe ₂), 3.80 (t, 5.8 Hz, 6H, OCH ₂), 3.69 (d, 16.8 Hz, 1H, CH ₂), 3.63 (d, 16.8 Hz, 1H, CH ₂), 2.91 (d, 5.9 Hz, 1H, H ⁵), 2.83 (t, 5.8 Hz, 6H, NCH ₂), 1.23 (d, 6.2 Hz, 6H, CHMe ₂), 1.12 (d, 7.1 Hz, 3H, Me) ppm. ¹³ C NMR (CD ₃ Cl) δ 205.1 (C=O), 167.92 (CO ₂), 145.75 (C ¹), 128.42 (C ²), 126.93 (C ³), 120.67 (C ⁴), 68.18 (CHMe ₂), 57.67 (OCH ₂), 54.60 (CH ₂), 51.14 (NCH ₂), 46.84 (C ⁵), 31.97 (C ⁵), 21.77 (CMe ₂), 19.20 (CH ₃) ppm. Anal. Found: C, 57.70; H, 7.39; N, 3.54. C ₁₉ H ₂₆ NO ₆ Si calc.:		47.90 (C ⁵), 31.97 (C ⁶), 28.02 (C(CH ₃) ₃). 19.19 (CH ₃) ppm. Anal. Found: C,
15 (C(O)CH ₂ CO ₂ <i>i</i> Pr) Mp 104.4°C. IR $\nu_{CO, CO2}$ 1737, 1705 cm ⁻¹ , ν_{Si-O} 1100(br) cm ⁻¹ . ¹ H NMR (CD ₃ Cl) δ 6.36 (d, 4.9 Hz, 1H, H ²), 6.08 (ddd, 0.6, 4.9, 9.4 Hz, 1H, H ³), 5.61 (dd, 6.2, 9.4 Hz, 1H, H ⁴), 5.03 (m, CHMe ₂), 3.80 (t, 5.8 Hz, 6H, OCH ₂), 3.69 (d, 16.8 Hz, 1H, CH ₂), 3.63 (d, 16.8 Hz, 1H, CH ₂), 2.91 (d, 5.9 Hz, 1H, H ⁵), 2.83 (t, 5.8 Hz, 6H, NCH ₂), 1.23 (d, 6.2 Hz, 6H, CHMe ₂), 1.12 (d, 7.1 Hz, 3H, Me) ppm. ¹³ C NMR (CD ₃ Cl) δ 205.1 (C=O), 167.92 (CO ₂), 145.75 (C ¹), 128.42 (C ²), 126.93 (C ³), 120.67 (C ⁴), 68.18 (CHMe ₂), 57.67 (OCH ₂), 54.60 (CH ₂), 51.14 (NCH ₂), 46.84 (C ⁵), 31.97 (C ⁵), 21.77 (CMe ₂), 19.20 (CH ₃) ppm. Anal. Found: C, 57.70; H, 7.39; N, 3.54. C ₁₉ H ₂₆ NO ₆ Si calc.:		58.65; H, 7.63; N, 3.42. C ₂₀ H ₃₁ NO ₆ Si calc.: C, 58.14; H, 7.54; N, 3.13%.
(CD ₃ Cl) δ 6.36 (d, 4.9 Hz, 1H, H ²), 6.08 (ddd, 0.6, 4.9, 9.4 Hz, 1H, H ³), 5.61 (dd, 6.2, 9.4 Hz, 1H, H ⁴), 5.03 (m, <i>CH</i> Me ₂), 3.80 (t, 5.8 Hz, 6H, OCH ₂), 3.69 (d, 16.8 Hz, 1H, CH ₂), 3.63 (d, 16.8 Hz, 1H, CH ₂), 2.91 (d, 5.9 Hz, 1H, H ⁵), 2.83 (t, 5.8 Hz, 6H, NCH ₂), 1.23 (d, 6.2 Hz, 6H, CH <i>M</i> e ₂), 1.12 (d, 7.1 Hz, 3H, Me) ppm. ¹³ C NMR (CD ₃ Cl) δ 205.1 (C=O), 167.92 (CO ₂), 145.75 (C ¹), 128.42 (C ²), 126.93 (C ³), 120.67 (C ⁴), 68.18 (<i>C</i> HMe ₂), 57.67 (OCH ₂), 54.60 (CH ₂), 51.14 (NCH ₂), 46.84 (C ⁵), 31.97 (C ⁵), 21.77 (<i>CM</i> e ₂), 19.20 (CH ₃) ppm. Anal. Found: C, 57.70; H, 7.39; N, 3.54. C ₁₉ H ₂₆ NO ₆ Si calc.:	15(С(О)СН ₂ СО ₂ <i>i</i> Рт)	Mp 104.4°C. IR $\nu_{CO,CO2}$ 1737, 1705 cm ⁻¹ , ν_{Si-O} 1100(br) cm ⁻¹ . ¹ H NMR
5.61 (dd, 6.2, 9.4 Hz, 1H, H ⁴), 5.03 (m, $CHMe_2$), 3.80 (t, 5.8 Hz, 6H, OCH ₂), 3.69 (d, 16.8 Hz, 1H, CH ₂), 3.63 (d, 16.8 Hz, 1H, CH ₂), 2.91 (d, 5.9 Hz, 1H, H ⁵), 2.83 (t, 5.8 Hz, 6H, NCH ₂), 1.23 (d, 6.2 Hz, 6H, CH Me_2), 1.12 (d, 7.1 Hz, 3H, Me) ppm. ¹³ C NMR (CD ₃ Cl) δ 205.1 (C=O), 167.92 (CO ₂), 145.75 (C ¹), 128.42 (C ²), 126.93 (C ³), 120.67 (C ⁴), 68.18 (<i>C</i> HMe ₂), 57.67 (OCH ₂), 54.60 (CH ₂), 51.14 (NCH ₂), 46.84 (C ⁵), 31.97 (C ⁵), 21.77 (<i>CMe</i> ₂), 19.20 (CH ₃) ppm. Anal. Found: C, 57.70; H, 7.39; N, 3.54. C ₁₉ H ₂₆ NO ₆ Si calc.:		$(CD_3Cl) \delta 6.36 (d, 4.9 Hz, 1H, H^2), 6.08 (ddd, 0.6, 4.9, 9.4 Hz, 1H, H^3),$
OCH ₂), 3.69 (d, 16.8 Hz, 1H, CH ₂), 3.63 (d, 16.8 Hz, 1H, CH ₂), 2.91 (d, 5.9 Hz, 1H, H ⁵), 2.83 (t, 5.8 Hz, 6H, NCH ₂), 1.23 (d, 6.2 Hz, 6H, CH Me_2), 1.12 (d, 7.1 Hz, 3H, Me) ppm. ¹³ C NMR (CD ₃ Cl) δ 205.1 (C=O), 167.92 (CO ₂), 145.75 (C ¹), 128.42 (C ²), 126.93 (C ³), 120.67 (C ⁴), 68.18 (CHMe ₂), 57.67 (OCH ₂), 54.60 (CH ₂), 51.14 (NCH ₂), 46.84 (C ⁵), 31.97 (C ⁵), 21.77 (C Me_2), 19.20 (CH ₃) ppm. Anal. Found: C, 57.70; H, 7.39; N, 3.54. C ₁₉ H ₂₆ NO ₆ Si calc.:		5.61 (dd, 6.2, 9.4 Hz, 1H, H ⁴), 5.03 (m, CH Me ₂), 3.80 (t, 5.8 Hz, 6H,
5.9 Hz, 1H, H ⁵), 2.83 (t, 5.8 Hz, 6H, NCH ₂), 1.23 (d, 6.2 Hz, 6H, CH Me_2), 1.12 (d, 7.1 Hz, 3H, Me) ppm. ¹³ C NMR (CD ₃ Cl) δ 205.1 (C=O), 167.92 (CO ₂), 145.75 (C ¹), 128.42 (C ²), 126.93 (C ³), 120.67 (C ⁴), 68.18 (CHMe ₂), 57.67 (OCH ₂), 54.60 (CH ₂), 51.14 (NCH ₂), 46.84 (C ⁵), 31.97 (C ⁵), 21.77 (C Me_2), 19.20 (CH ₃) ppm. Anal. Found: C, 57.70; H, 7.39; N, 3.54. C ₁₉ H ₂₆ NO ₆ Si calc.:		OCH ₂), 3.69 (d, 16.8 Hz, 1H, CH ₂), 3.63 (d, 16.8 Hz, 1H, CH ₂), 2.91 (d,
1.12 (d, 7.1 Hz, 3H, Me) ppm. ¹³ C NMR (CD_3Cl) & 205.1 (C=O), 167.92 (CO_2), 145.75 (C ¹), 128.42 (C ²), 126.93 (C ³), 120.67 (C ⁴), 68.18 (CHMe ₂), 57.67 (OCH ₂), 54.60 (CH ₂), 51.14 (NCH ₂), 46.84 (C ⁵), 31.97 (C ⁵), 21.77 (CMe ₂), 19.20 (CH ₃) ppm. Anal. Found: C, 57.70; H, 7.39; N, 3.54. C ₁₉ H ₂₆ NO ₆ Si calc.:		5.9 Hz, 1H, H^5), 2.83 (t, 5.8 Hz, 6H, NCH ₂), 1.23 (d, 6.2 Hz, 6H, CH Me_2),
145.75 (C ¹), 128.42 (C ²), 126.93 (C ³), 120.67 (C ⁴), 68.18 (CHMe ₂), 57.67 (OCH ₂), 54.60 (CH ₂), 51.14 (NCH ₂), 46.84 (C ⁵), 31.97 (C ⁵), 21.77 (CMe ₂), 19.20 (CH ₃) ppm. Anal. Found: C, 57.70; H, 7.39; N, 3.54. C ₁₉ H ₂₆ NO ₆ Si calc.:		1.12 (d, 7.1 Hz, 3H, Me) ppm. 13 C NMR (CD ₃ Cl) δ 205.1 (C=O), 167.92 (CO ₂),
(OCH_2) , 54.60 (CH_2) , 51.14 (NCH_2) , 46.84 (C^5) , 31.97 (C^5) , 21.77 (CMe_2) , 19.20 (CH_3) ppm. Anal. Found: C, 57.70; H, 7.39; N, 3.54. $C_{19}H_{26}NO_6Si$ calc.:		
19.20 (CH ₃) ppm. Anal. Found: C, 57.70; H, 7.39; N, 3.54. C ₁₉ H ₂₆ NO ₆ Si calc.:		
U, J7.34, FL, 7.43, IN, 3.2270.		C, 57.34; H, 7.43; N, 3.22%.
^a The signals of H^4 and H^6 overlapped with the neaks of H^2 and NCH _a , respectively, and obscured.		

^a The signals of H^4 and H^6 overlapped with the peaks of H^2 and NCH₂, respectively, and obscured.

^b We could not determine the position and the splitting pattern of each peaks because of trace existence.

^c The signals of P(O)(OMe)₂, H⁴, and H⁶ were overlapped with other signals and obscured.

^d The signal of H^4 overlapped the signal of silatrane (2.75 ppm) and was obscured.

^e We failed to obtain analytical data.

^f Due to the presence of *ortho*-methylsilatranylbenzene and of $15(CH_2CO_2R)$, we could not assign the splitting pattern of each peaks and could not obtain analytical data.

atmosphere. THF (tetrahydrofuran) was distilled freshly from sodium benzophenone ketyl prior to use, and other solvents were purified according to standard methods. Reagent grade chemicals were used without further purification. Basic Science Center. ¹H and ¹³C NMR spectra were obtained with a Varian XL-200 instrument. Infrared spectra were recorded on a Perkin-Elmer spectrometer. Characterizations are summarised in Table 1.

Elemental analyses were performed at the Korea

Compounds 1 and 2 were synthesized as previously described [2].

2.1. Synthesis of $[{\eta^{5}-1-N(CH_{2}CH_{2}O)_{3}Si-6-Me-C_{6}H_{5}}-Mn(CO)_{2}NO]BF_{4}$ (3) [3(CO)]

To 2 (0.787 g, 1.94 mmol) in 30 ml of CH_2Cl_2 at room temperature was added a slight excess of NOBF₄ and the mixture was stirred for 30 min. Several drops of CH_3NO_2 were added and then the solution was filtered. Excess diethyl ether was added to precipitate the product as yellow orange solids, which were washed with diethyl ether and dried. Yield: 0.708 g (81%).

2.2. Synthesis of $[\{\eta^{5}-1-N(CH_{2}CH_{2}O)_{3}Si-6-Me-C_{6}H_{5}\}$ -Mn(CO)(NO)L]BF₄, (3) $[3(L)](L = PPh_{3}, PPh_{2}Me, PPh_{2}H, and P(OPh)_{3})$

In a typical experiment, stirring with excess PPh₃ (1.44 g, 5.51 mmol) and 3(CO) (0.272 g, 0.551 mmol) in 25 ml of CH₂Cl₂ for 5 h followed by addition of diethyl ether gave $3(PPh_3)$ (0.295 g, 86%).

2.3. Synthesis of $[{\eta^4-1-N(CH_2CH_2O)_3Si-5-P(O)(O-Me)_2-6-Me-C_6H_5}Mn(CO)_2NO]$ (4)

Five equivalents of $P(OMe)_3$ were added to the solution of 3(CO) in 20 ml of CH_2Cl_2 at room temperature under N₂. After stirring for 2.5 h, the solution was concentrated and put through neutral alumina with diethyl ether to separate the product from the excess $P(OMe)_3$. The product, 4, was obtained as solids after removal of the solvent.

Compound 4 was unstable in $CDCl_3$ and led to demetallated product, *cis*-5-dimethylphosphono-6-methyl-1-silatranyl-1,3-cyclohexadiene (5). The overall yield from 3(CO) to 5 was 80%.

2.4. Addition of hydride donor to 3(CO)

A little excess NaBH₃CN was added to the solution of 3(CO) (0.562 g, 1.14 mmol) in 30 ml of THF at room temperature under nitrogen. After stirring for 1 h, the solution was allowed to warm to room temperature and extracted with diethyl ether. The ether extracts were dried (MgSO₄) and concentrated to give the crude product as a mixture of two regioisomers, [{ η^{4} -1-N-(CH₂CH₂O)₃-Si-6-Me-C₆H₆]Mn(CO)₂NO] (6) and [{ η^{4} -6-Me-5-N(CH₂CH₂O)₃Si-C₆H₆]Mn(CO)₂NO] (7). Compounds 6 and 7 were separated by column chromatography on silica gel using diethyl ether as eluant. The total yield of 6 and 7 was 95% and the ratio of 6:7 was 91:4.

By the same method as the addition of NaBH₃CN, a little excess NaBD₄ was added to compound 3(CO) (0.364 g, 0.737 mmol). After work-up, two products, $[{\eta^4-1-N(CH_2CH_2O)_3-Si-6-Me-C_6H_5D}Mn(CO)_2NO]$ [6(D)] and $[\{\eta^{4}-6-Mc-5-N(CH_{2}CH_{2}O)_{3}Si-C_{6}H_{5}D\}$ Mn(CO)₂NO] [7(D)] were obtained in the ratio of 4:3 (total yield: 77%).

2.4.1. Demetallation of 6

Ten equivalents of Me₃NO were added to a stirred solution of 6 (0.145 g, 0.354 mmol) in 20 ml of benzene. The mixture was refluxed for 2 h and then cooled to room temperature. After filtration, the filtrate was washed with water (30 ml × 3) and then extracted with diethyl ether (30 ml × 3). The combined extracts were dried (MgSO₄), and then concentrated to give the crude product. Purification by column chromatography (silica gel, diethyl ether) gave the product. Demetallation of 6(H) gave (*R*)-6-methyl-1-silatranyl-1,3-cyclohexadiene [8(H)] (82%), and that of 6(D) gave (*R*)-6-deuterio-6-methyl-1-silatranyl-1,3-cyclohexadiene [8(D)] (75%).

2.4.2. Demetallation of 7

This was done in a similar way to that described above. Demetallation of 7(H) gave 8(H), ortho-methylsilatranyl benzene [9(H)] and cis-5-methyl-6-silatranyl-1,3-cyclohexadiene [10(H)] in the ratio of 2:1:2.7 (total yield: 72%), and that of 7(D) led to 8(D), 9(D), and cis-6-deuterio-5-methyl-6-silatranyl-1,3-cyclohexadiene [10(D)] in the ratio of 4:1:13 (total yield: 72%).

2.5. Addition of $NaCH(CO_2Et)CN$ to 3(CO)

To a stirred solution of NaH (40 mg, 1.67 mmol) in 15 ml of THF at 0°C under N₂ was added ethyl cyanoacetate (0.18 ml). The mixture was stirred for 10 min, after which time the solution became clear. The resulting solution was added via syringe to the suspension of 3(CO) (0.56 g, 1.13 mmol) in 30 ml of THF at 0°C. Stirring was continued for 15 min, and then the reaction mixture was allowed to warm to room temperature. The mixture was poured into saturated $NH_{4}Cl$ solution (50 ml) and extracted with diethyl ether (30 ml \times 3), dried (MgSO₄), and evaporated in vacuo to yield crude product. The pure product [$\{\eta^4$ --N(CH₂CH₂O)₃Si-5-(NC)(EtO₂C)CH-6-Me-C₆H₅Mn}-(11) (0.183 g, 31%, red oil) was obtained by column chromatography on silica gel eluting with diethyl ether.

2.5.1. Demetallation

Demetallation of 11 was done by the similar method as the demetallation of 6 except using 4-methylmorpholine N-oxide instead of Me₃NO. Compound *cis*-5-(1-cyano-1-ethoxycarbonyl)-methyl-6-methyl-1-silatranyl-1,3-cyclohexadiene (12) was obtained in 41% yield.

2.6. Addition of $LiCH_2CN$ to 3(CO)

To the LDA solution was added dropwise 0.06 ml of CH₃CN (1.12 mmol). The resulting solution was added dropwise to 3(CO) (0.492 g, 0.996 mmol) at -78° C. The reaction mixture was stirred for 30 min, poured into water and then extracted with diethyl ether (30 ml × 3). The ether extracts were dried (MgSO₄), evaporated to dryness, and purified by column chromatography on silica gel eluting with diethyl ether. After removal of the solvent, [{ η^{5} -1-N(CH₂CH₂O)₃Si-6-Me-C₆H₅}Mn(CO){C(O)CH₂CN}NO] [13(C(O)CH₂CN)] was obtained in the yield of 0.287 g (64%).

2.6.1. Demetallation

When $13(C(O)CH_2CN)$ was refluxed in benzene overnight, two kinds of compound were obtained. One compound, *trans*-5-cyanomethylcarbonyl-6-methyl-1silatranyl-1,3-cyclohexadiene [15(C(O)CH_2CN)], was formed via migration of the C(O)CH_2CN group from metal to the π -hydrocarbon ring. We failed to isolate the other compound in the pure form.

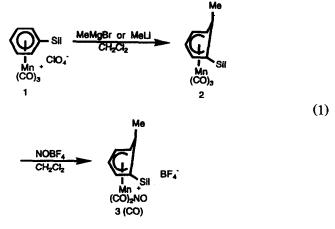
2.7. Addition of $LiCH_2CO_2^{t}Bu$ to 3(CO)

To the LDA solution was added dropwise 0.41 ml of tert-butyl acetate (3.0 mmol). The resulting solution was added dropwise to 3(CO) (0.184 g, 0.373 mmol) in dry THF (30 ml) at -78° C. The reaction mixture was stirred for 30 min at -78° C, and then poured into water and extracted three times with diethyl ether. The ether extracts were dried (MgSO₄), evaporated to dryness, and purified by column chromatography on silica gel eluting with diethyl ether and THF. After removal of the solvent the residue was washed with hexane to give pure [{ η^{5} -1-N(CH₂CH₂O)₃Si-6-Me-C₆H₅}Mn-(CO){C(O)CH₂CO^tBu}NO][13(C(O)CH₂CO₂^tBu)].

2.7.1. Demetallation

Compound 13(C(O)CH₂CO₂^tBu) soaked with THF was kept under N₂ for several days in the freezer. Then, to ensure demetallation, the compound was stirred in CH₂Cl₂ at room temperature overnight. After purification by flash column chromatography, *trans*-5-tert-butoxycarbonylmethylcarbonyl-6-methyl-1-sila-tranyl-1,3-cyclohexadiene [15(C(O)CH₂CO₂^tBu)] was obtained in the analytically pure form. The overall yield from 3 to 15(C(O)CH₂CO^t₂Bu) was 15%.

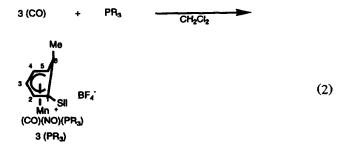
2.8. Addition of $LiCH_2CO_2^i Pr$ to 3(CO)


The same procedure as the addition of LiCH₂-CO₂^tBu was followed except using LiCH₂CO₂ⁱPr instead of LiCH₂CO₂^tBu.

2.8.1. Demetallation

Demetallation of $[{\eta^{5}-1-N(CH_{2}CH_{2}O)_{3}Si-6-Me-C_{6}-H_{5}}Mn(CO){C(O)CH_{2}CO_{2}^{i}Pr}NO]$ [13(C(O)CH₂-CO₂ⁱPr)] was done by the same method as the demetallation of M-C(O)CH₂CO₂^tBu. The overall yield from 3(CO) to *trans*-5-isopropoxycarbonylmethylcarbonyl-6-methyl-1-silatranyl-1,3-cyclohexadiene [15(C(O)CH₂-CO₂ⁱPr)] was 17%.

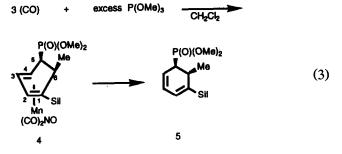
3. Results and discussion


Compound 3(CO) was synthesized by reaction between 2 and NOBF₄ in CH₂Cl₂ (Eq. 1). Compound 3(CO) is thermally stable, but rather unstable in air.

Sil = Si(OCH2CH2)3N

3.1. Addition of PPh_3 , $P(OPh)_3$, $PMePh_2$ and $PHPh_2$ to 3(CO)

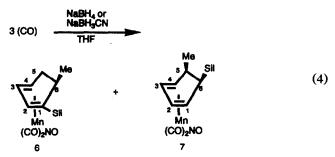
Phosphines or phosphites attacked the metal of 3(CO) with CO displacement (Eq. 2) [3]. Displacement of carbonyl by a phosphorus ligand generates a chiral-


PR3 = PHPh2, PMePh2, PPh3, P(OPh)3

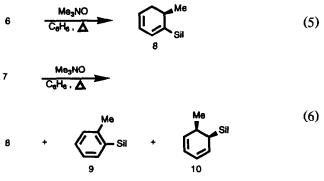
ity on the metal centre. In the ¹H NMR spectra of 3(L), $(L = PMePh_2, PHPh_2)$, we could see two kinds of diastereomers, i.e. the methyl peak appeared at δ 0.48 and 0.67 ppm for $3(PMePh_2)$ and δ 0.54 and 0.69 ppm for $3(PHPh_2)$. For other 3(L) $(L = PPh_3$ and $P(OPh)_3)$

compounds, there might be a chance that the methyl peaks of two diastereomers coincide (0.45 and 0.46 ppm for $3(P(OPh)_3)$ and $3(PPh_3)$, respectively), in the ¹H NMR spectra and that it might exist as a single diastereomer. We could not decide which was more probable. However, depending upon the phosphorus ligand, the ratio of two diastereomers would be varied. Temporarily, we assign the term A diastereomer for the case where the methyl peak appeared at ca. 0.5ppm and B diastereomer for when the methyl peak appeared at 0.68 ppm. Then, the A:B ratios were 3.5:1 and 1:1.75 for the complexes of 3(PPh, Me) and $3(PPh_2H)$, respectively. At first, we expected that the steric bulk of phosphorus ligand would be a factor controlling diastereoselectivity. However, the available data on steric bulk of phosphorus ligands [4] (the cone angles of PPh₂H, P(OPh)₃, PMePh₂ and PPh₃ are 128°, 128°, 136°, and 145°, respectively) are not consistent with the diastereoselectivity. Other factors may also influence the diastereoselectivity.

3.2. Addition of $P(OMe)_3$ to 3(CO)


IR studies showed that at room temperature $P(OMe)_3$ reacts with 3(CO) to give a mixture of the product derived from CO substitution, $3(P(OMe)_3)(\nu_{CO} 2025 \text{ and } \nu_{NO} 1780 \text{ cm}^{-1})$, and the product derived from addition to the cyclohexadienyl ring, $4(\nu_{CO} 2020, 1960 \text{ cm}^{-1}, \nu_{P=O} 1250 \text{ and } \nu_{NO} 1720 \text{ cm}^{-1})$. However, treatment of 3(CO) in CH₂Cl₂ with 5 equiv. of P(OMe)_3 gave exclusively compound 4 [5] in a reasonable yield (Eq. 3).

The *exo* position of the $P(O)(OMe)_2$ group was confirmed by checking the coupling constant between H⁵ and H⁶. If both protons were situated as *trans*, then the coupling constant would be 2–3 Hz. If both protons were situated as *cis*, then the coupling constant would be 9–10 Hz. According to the ¹H NMR spectrum, the coupling constant was 9.7 Hz. Thus both protons were situated as *cis* and P(O)(OMe)₂ group was situated in *exo* fashion. Compound 4 is apparently derived from the spontaneous Michaelis-Arbuzov reaction of the P(OMe)₃ adduct [6]. Thus, this reaction provides an easy and viable synthetic route to the silatranyl phosphonate cyclohexadienyl complex. The phosphonate complex is highly sensitive to oxygen and rapidly decomposed in solution. After demetallation of 4, silatranyl phosphonate cyclohexadiene derivative (5) was obtained quantitatively.

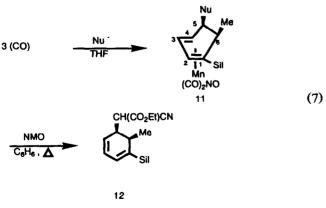

3.3. Addition of hydride to 3(CO)

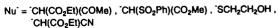
The reaction of $NaBH_3CN$ with 3(CO) occurred cleanly to give diene complexes 6 and 7 (Eq. 4) [7]. The hydride added at the C-1 or C-5 position of the dienyl

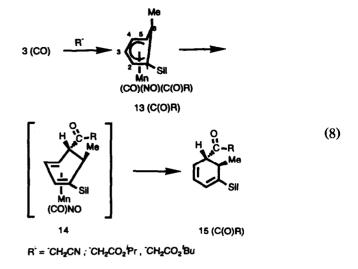
ring. The ratio of 6 and 7 was dependent upon the reaction temperature. When NaBH₃CN was added at room temperature, the ratio of 6 and 7 was 91:4. When NaBH₃CN was added at -15° C, this ratio was 1:1. As the reaction temperature was further lowered, the formation of 7 seemed to be more favourable. However, when the reaction temperature was below -40° C, the reactant was recovered. Compounds 6 and 7 can be handled in air and separated by column chromatography. The hydride is situated *endo* in compounds 6 and 7. This was ascertained by deuteration and demetallation experiments. For compound 7, the added hydride gave a clean doublet of doublet that was coupled to H-5 hydrogen (J = 10.5 Hz) and H-6 hydrogen (J = 3.1 Hz).

Demetallation of 6 was performed by using Me_3NO in refluxing benzene [8] and gave a cyclohexadiene derivative 8 (Eq. 5). However, when 7 was treated with Me_3NO in refluxing benzene, a mixture of 8, 9, and 10 was obtained in the ratio of 2:1:2.7 for 7(H) and 4:1:13 for 7(D) (Eq. 6). Compound 8 could be ob-

tained by hydride migration followed by demetallation or by removal and readdition of hydrogen while refluxing in benzene. The formation of 9 could be understandable in terms of removal of one of the hydrogens.


121


The endo stereochemistry observed in the hydride addition reaction suggests an initial interaction with the metal to form a M-H or M-CHO species [9,10]. followed by hydride migration to give the diene products 6 and 7. Sweigart reported [9] the spectral evidence for the formation of formyl complex in the reaction of $(6-exo-PhC_6Me_5H)Re(CO)_2NO^+$ with $[Bu_4N]BH_4$ in CH₃CN at -35°C. Recently, Eyman reported [10] the intermediary of a metal formyl, in the reactions of NaBD₄ (-83° C) with [{C₆Me₆}Mn- $(CO)_3$]PF₆ in CH₃OD and NaBH₄ (-50°C) with [(C₆- $H_6)Mn(CO)_3]^+$ in CH₃OH by the detection of downfield ²H and ¹H NMR signals. It is probable that for the addition of hydride to compound 3(CO) a reactive formyl species is formed initially, followed by hydride migration to the cyclohexadienyl ring. The carbanion addition to 3(CO) (presented later) would be indirect evidence for the formation of a formyl intermediate.


3.4. Addition of carbon nucleophiles to 3(CO)

The addition reactions of several kinds of carbon nucleophiles were studied. Addition of RMgX or RLi (R = Me and Ph) to 3(CO) resulted in poor yield [11]. Addition of the carbanions of ethyl acetoacetate, methyl phenylsulfonylacetate and mercaptoethanol to 3(CO) gave diene complexes 11 [11] (when the reaction was checked by IR) (Eq. 7). However, the diene complexes, 11, decomposed rather rapidly in solution. Treatment of the diene complexes with Me₃NO in benzene gave *ortho*-methylsilatranylbenzene. However, the product of reaction between 3 and the carbanion of ethyl cyanoacetate was rather stable and could be demetallated by treating with 4-methylmorpholine *N*-oxide (MNO) to yield the cyclohexadiene derivative of silatrane, 12.

When compound 3(CO) was treated with LiCH₂CN, the acyl complex 13(C(O)CH₂CN) was isolated in 64% yield (Eq. 8). We could see the ν (C=O) stretching at

1622 cm⁻¹ [12] and the methylene protons at 3.55 and ca. 3.6 ppm, respectively. Due to the overlapping with the signals of silatranyl OCH_2 , it is not easy to assign the exact peak position of the proton at ca. 3.6 ppm. The peak at 3.55 ppm was doublet due to the geminal coupling (J = 15.6 Hz). 13(C(O)CH₂CN) rearranged very slowly to diene compound, presumably 14, that the C(O)CH₂CN group was situated at endo. Compound 14 decomposed ultimately to afford trans-disubstituted cyclohexadiene derivatives of silatrane, 15(C(O)CH₂CN). The rearrangement continued in solution and even in the solid state. The same kind of rearrangement was observed [12] in the reaction of $(exo-R-\eta^5-C_6H_6)Mn(CO)_2NO^+$ (R = Me or Ph) with carbon nucleophiles such as LiPh and LiMe. MeLi or PhLi attacked the carbonyl group in $(exo-R-\eta^5-C_6H_6)Mn(CO)_2NO^+$ (R = Me or Ph), ultimately affording trans-disubstituted cyclohexadienes. However, the metal carbonyl-attacked complex was not observed in this case because of its instability. However, when LiCH₂CN was reacted with $(exo-Me-\eta^5-C_6H_6)Mn (CO)_2NO^+$, we could see the formation of acyl compound by checking IR (ν (C=O) 1622 cm⁻¹) [13]. The acyl compound ultimately decomposed during separation.

The same kind of nucleophilic addition and rearrangement occurred with complexes $13(C(O)CH_2-CO_2^tBu)$ and $13(C(O)CH_2CO_2^tPr)$. The rearrangement could be accelerated by treatment with polar solvent or silica gel. However, when the rearrangement was speeded up, the yield of aromatized compound, *ortho*methylsilatranylbenzene, increased. Thus, to decrease the distribution of aromatized product, the compound was soaked with THF under N₂ and kept in a freezer for several days and then stirred in CH₂Cl₂ overnight. After column chromatography, we obtained the analytically pure rearranged products, $15(C(O)CH_2CO_2^tBu)$ and $15(C(O)CH_2CO_2^tPr)$, which were characterized. The rearrangement of complex 13(C(O)R) to 15(C(O)R) occurred even at low temperature and in the solid phase.

The regioselectivities of carbon nucleophile addition to 3(CO) and $(exo-R-\eta^5-C_6H_6)Mn(CO)_2NO^+$ were almost the same. However, there were big differences in the stabilities of the reaction products. In particular the acyl compounds 13 had a degree of stability. Thus we could characterize 13 and observe the rearrangement of 13 to the diene complex, presumably 14, ultimately affording trans-disubstituted cyclohexadiene derivatives of silatrane, 15. However, the acyl compound derived from the reaction between (exo-R- η^{5} - C_6H_6)Mn(CO)₂NO⁺ and LiCH₂CN had only marginal stability. We envisaged that the introduction of the silatranyl group improved the stability of the acyl compound 13. However, we are not sure how the silatranyl group helps to enhance the stability of acyl compounds. We are now continuing to clarify the effect of the silatranyl group on the stability of the acyl compound.

In conclusion, we have demonstrated that the manganese system discussed in this paper is a versatile means for the synthesis of new silatranyl derivatives via difunctionalization of phenylsilatrane.

Acknowledgement

Financial support from the Korea Science and Engineering Foundation (Grant No. 90-03-00-18) is gratefully acknowledged.

References

- 1 S.N. Tandura, M.G. Voronkov and N.V Alekseev, Top. Curr. Chem., 131 (1986) 99.
- 2 J.S. Lee, Y.K. Chung, D. Whang and K. Kim, J. Organomet. Chem., 445 (1993) 49; A.-S. Oh, Y.K. Chung and S. Kim, Organometallics, 11 (1992) 1394; Y.-A. Lee, Y.K. Chung, Y. Kim, J.H. Jeong, G. Chung and D. Lee, Organometallics, 10 (1991) 3707; Y.-A. Lee, Y.K. Chung, Y. Kim and J.H. Jeong, Organometallics, 9 (1990) 2851; T.-M. Chung, Y.-A. Lee, Y.K. Chung and I.N. Jung, Organometallics, 9 (1990) 1976.
- 3 Y.K. Chung, H.S. Choi, D.A. Sweigart and N.G. Connelly, J. Am. Chem. Soc., 104 (1982) 4245; Y.K. Chung, D.A. Sweigart, N.G. Connelly and J.B. Sheridan, J. Am. Chem. Soc., 107 (1985) 2388.
- 4 C.A. Tolman, Chem. Rev., 77 (1977) 313.
- 5 T.-H. Hyeon and Y.K. Chung, J. Organomet. Chem., 372 (1989) C12.
- 6 T.B. Brill and S.J. Landon, Chem. Rev., 84 (1984) 577; A. Hafner, J.H. Bieri, R. Prewo, W. Philipsbor and A. Salzer, Angew. Chem. Int. Ed. Engl., 22 (1983) 713; L. Horner, H. Hoffmann and H.G. Wippel, Chem. Ber., 91 (1958) 61; W.S. Wadsworth and W.D. Emmons, J. Am. Chem. Soc., 83 (1961) 1733.
- 7 Y.K. Chung, E.D. Honig, W.T. Robinson, D.A. Sweigart, N.G. Connelly and S.D. Ittel, Organometallics, 2 (1983) 1479.
- 8 Y. Shvo and E. Hazum, J. Chem. Soc., Chem. Commun., (1974) 336.
- 9 R.D. Pike, W.J. Ryan, N.S. Lennhoff, J. Van Epp and D.A. Sweigart, J. Am. Chem. Soc. 112 (1990) 4798.
- 10 A.M. Morken, D.P. Eyman, M.A. Wolff and S.J. Schauer, Organometallics, 12 (1993) 725.
- 11 T.-Y. Lee, Y.K. Kang, Y.K. Chung, R.D. Pike and D.A. Sweigart, Inorg. Chim. Acta, 214 (1993) 125.
- 12 M. Brookhart, A.R. Pinhas and A. Lukas, Organometallics, 1 (1982) 1730.
- 13 S.S. Lee and Y.K. Chung, Unpublished results.